

Project 1

TRANSACTION FRAUD
REPORT

Duyen Tran

MGTA 463 – Fraud Analytics

Table of content
I. Data description... 1

1. Data overview..1
2. Statistical Tables..2

II. Data cleaning.. 6
1. Outlier Management:...6
2. Exclusions:.. 6
3. Imputation... 7

III. Variable creation...9
1. Entities...9
2. Variables creation.. 10
Table 4: Variables creation.. 11
3. Fraud detection conceptual..15

IV. Feature selection.. 16
1. Description of the process... 18
3. Implementation..19

V. Model exploration... 21
1. Methodology... 24

a. Baseline Model.. 24
b. Nonlinear Model..29

2. Model Result... 51
VI. Final Model Performance...53
VII. Conclusions and Further Work..56
Apendix 1: Data Quality Report.. 58
Appendix 2: Additional trials using LightGBM Forward...68
Appendix 3: Additional trials using Catboost Forward.. 69
References.. 70

Executive summary

Credit card fraud continues to be a significant challenge in the financial sector, with evolving

methods of fraud necessitating advanced analytics to safeguard consumer transactions. Effective

management of credit card transactions and fraud detection involves the systematic monitoring of

transaction patterns and the identification of anomalies that could indicate fraudulent activities.

Fraud Analytics leverages a combination of statistical, machine learning, and artificial

intelligence techniques to identify potentially fraudulent transactions. It uses historical data to

train models that can predict and flag transactions as suspicious based on deviations from

established spending patterns. Key techniques in fraud analytics include anomaly detection,

predictive modeling, network analysis, and clustering algorithms, all aimed at identifying

fraudulent transactions in near real-time.[1]

Figure 1: Workflow diagram of this report for predictive modeling

The figure 1 shows the workflow diagram throughout this project. In this project, we developed

the machine learning model to identify the fraudulent transactions within credit card data from a

synthetic dataset representing real U.S transactions over a year. By targeting a False Discovery

Rate (FDR) of 3% on out-of-time (OOT) data, we estimate a significant reduction in financial

looses due to fraud. This report outlines the data processing, feature engineering, model selection

and final model performance, aiming to provide actionable insights with minimal technical

jargon. The XGBoost model shows the best fraud detection result (FDR = 52,26%) for this

particular dataset, which help predict the maximum possible savings is $48,444,000 at 5% cut-off.

I. Data description

1. Data overview

The dataset contains transaction records from credit card usage. It originates from a synthetic

dataset representative of real U.S. credit card transactions over 10 years. The dataset comprises

97,852 records and 10 fields, covering transactions from 01/01/2010 to 12/31/2010. The fields

are a mixture of numeric and categorical types, including identifiers, transaction details, merchant

information, and a fraud indicator:

Project 1: Fraud Detection 1 Duyen Tran

- Record: A unique identifier of each data record, from 1 to 97,852. This field also

represents the time orders

- Date: The transaction's date, is formatted as a string (e.g., ‘1/1/10’).

- Cardnum: The account number for the transaction.

- Merchnum: A typically 12-digit merchant identification number involved in the

transaction.

- Merch Description: A textual description of the merchant.

- Merch State: The state of the address for the merchant.

- Merch Zip: The state in which the merchant is located

- Transtype: A code denoting the type of transaction.

- Amount: The dollar amount of the transaction.

- Fraud: A binary indicator (0 or 1) denotes whether the transaction was fraudulent or not

2. Statistical Tables

Table 1 and 2 bellow show the summary information about all fields. There are Date and Amount

are numeric type field whereas the other fields are categorical or text. There fields have some

missing values: Merchnum, Merch state and Merch zip. It was noticed that the number of unique

values of the Merch state field is 227, which is unexpected because the U.S has only 50 states.

Some of values in field might be from toher countries.

Table 1: Numeric Fields Table

Field Name #Records
Have
Values

%
Populated

Zeros Min Max Mean Std
Dev

Most
Common
Value

Date 97,852 100.00% 0 1/1/10 12/31/10 NA NA 2/28/10

Amount 97,852 100.00% 0 0.01 3,102,045.53 425.47 9949.8 3.62

Project 1: Fraud Detection 2 Duyen Tran

Table 2: Categorical Fields Table

Field Name # Records with
Values

% Populated # Zeros # Unique
Values

Most Common
Value

Recnum 97,852 100.00% 0 97,852 1

Cardnum 97,852 100.00% 0 1,645 5142148452

Merchnum 94,455 96.52% 3,397 13,091 930090121224

Merch description 97,852 100.00% 0 13,126 GSA-FSS-ADV

Merch zip 92,149 95.19% 4,703 4,568 38118

Merch state 96,649 98.77% 1,203 227 TN

Transtype 97,852 100.00% 0 4 P

Fraud 97,852 100.00% 95,805 2 0

Bellow we show some further information about the data:

Figure 2 shows the transaction amount by class (Fraud and Non Fraud). For Fraud 0 (Bule), there

are the most transactions are relatively small and densely populated near the lower end of the

amount scale whereas Fraudulent transactions are visible throughout but are particularly

noticeable at higher amounts, where they are more sporadic.

Figure 3 shows the total count of Fraud = 0 is 95805, and the total count of Fraud = 1 is 2047.

Project 1: Fraud Detection 3 Duyen Tran

Figure 2: Data exploration based on two main classes of Data

Figure 3: Data exploration bashed on the record number

Project 1: Fraud Detection 4 Duyen Tran

Figure 4: Most common merchant descriptions

Figure 4 shows the top 15 of the most transactions for different merchants based on the merchant

descriptions. GSA-FSS-ADV is the most frequented merchant with 1,706 transactions,

SIGMA-ALDRICH follows with 1,652 transactions.

Figure 5: Most common States

Project 1: Fraud Detection 5 Duyen Tran

Figure 5 shows the distribution of the top 15 of transactions across different merchant states. It

presents the number of transactions that have occurred in each state, allowing us to observe where

the most activity is taking place. Tennessee has the highest number of transactions with 12,169.

Other states with high transactions counts include Virginia and California with counts of 7,954

and 6,890 respectively.

II. Data cleaning

The goald of this step is to clean the data and prepare it for the training phase of the classifier. In

general, data in reality are noisy. Therefore, a cleaning step is necessary. In the contex of the

cleaning process, the procedure is as follows:

1. Outlier Management:

Identification: During our initial data analysis, we identified an extreme outlier within the

transaction amounts. This particular record showed a transaction amount exceeding $3,000,000.

Such a value is highly unusual within the context of typical credit card transactions recorded in

our dataset.

Action Taken:

After discovering this outlier, we consulted with the business manager to better understand its

context. The decision to remove this record was made because it was determined to be

non-representative of normal transactional behavior. This action was crucial to prevent the model

from being skewed by this extreme value, ensuring that our predictive modeling efforts would be

based on more typical transactional patterns, thus enhancing the overall accuracy and reliability of

our analysis

2. Exclusions:

Overview of Transaction Types: The dataset included records of four distinct transaction types

identified by the codes: P (Purchase), A (Adjustment), D (Deposit), and Y (Withdrawal). Each

type represents a different kind of transactional activity.

Decision on Exclusions:

After a thorough review and consultations with business managers, it was decided to focus the

analysis exclusively on transactions of type P (Purchase). This decision was informed by the

managerial strategy that aimed to optimize fraud detection mechanisms specifically for purchase
Project 1: Fraud Detection 6 Duyen Tran

transactions, which are the most relevant for our current business objectives. Consequently,

transactions coded as A, D, and Y were excluded from the dataset.

This exclusion helps streamline our data analysis and modeling efforts towards the transactions

most susceptible to fraud, thereby aligning our resources and strategies with business priorities.

The exclusion of non-purchase transactions ensures a focused analysis on the area of highest

impact and relevance, improving the effectiveness of our fraud detection models.

3. Imputation

Table 3: Fields with missing values

Field Records with missing

values

Merchnum 3,397

Merch state 1,203

Merch zip 4,703

Table 3 shows the information about the fields with missing values. The three fields in question

are closely linked to the "Merch description" field, indicating a strong association. However, it is

important to note that identical "Merch description" entries may correspond to different values

across these three fields. Additionally, these fields are interrelated, which justifies the use of the

mode (the most frequently occurring value) of each respective field to impute the missing data.

a. Merchnum

Initial condition: There are 3279 records with missing “Merchnum”

Strategy:

- Merch Description Mapping: Use the Merch description field to fill in the most appropriate

Merchnum for that Merch description. This resolved 1,164 missing records

Project 1: Fraud Detection 7 Duyen Tran

- Specific Description: For entries with “Merch description” as “RETAIL CREDIT

ADJUSTMENT” and “RETAIL DEBIT ADJUSTMENT”, assigned “Merchnum” as

“unknown”, addressing 694 records

- Unique Assignment: For the remaining 1,421 records, each unique “Merch description” (515

in total) was assigned a unique “Merchnum”, ensuring all records now have a non-blank

“Merchnum” field.

b. Merch state

Initial condition: There are 1,028 records with missing “Merch state”

Strategy:

- External Data Integration: Performed a left join with the USPS zip code database, matching

“Merch zip” with “zip” in the database, resolving 57 records

- Zipcode Mapping: Used internal “Merch zip” to fill in the most appropriate “Merch state”

for thatMerch zip, filled 17 missing records

- Description of State mapping: Use mapping to fill in missing “Merch state” values based on

the corresponding “Merch description”, resolving 667 records.

- Special Cases Handling:

+ Set Merch state to "unknown" for entries with "Retail Credit/Debit Adjustment," though it

did not resolve any new cases.

+ Assigned "foreign" to non-US states, improving geographical data consistency.

- Default to Unknown: The remaining 287 records were set to “unknown”, ensuring no blanks

in “Merch state”

c. Merch zip

Initial condition: There are 4,347 records with missing “Merch zip”

Strategy:

- External Data Integration: Performed a left join with the USPS zip code database,

matching “Merch state” with “state” in the database, resolving 3,188 missing records

Project 1: Fraud Detection 8 Duyen Tran

- Merch Description to zip mapping: For transactions with identifiable patterns in “Merch

description”, mapped to known “Merch zip”, resolving 381 cases

- Handling Specific Descriptions: Directly set “Merch zip” to "unknown" for entries related

to "RETAIL CREDIT ADJUSTMENT" and "RETAIL DEBIT ADJUSTMENT" where a

specific ZIP code was not applicable.

- Merchnum to zip Mapping: Mapped “Merchnum” to corresponding “Merch zip” based

on existing data patterns, filling in 302 more gaps.

- Utilization of Common ZIP Codes Based on State: For remaining cases, employ the most

common zip codes corresponding to each Merch state to impute the missing Merch zip,

fully addressing all missingMerch zip.

- Correction of Implausible Merch zip: Post-imputation, identified and corrected implausible

ZIP codes (such as 1-digit ZIPs) by setting them to "unknown" to maintain data validity.

III. Variable creation

Figure 6: Workflow of diagram - Feature Engineering

The creation of a comprehensive set of variables is crucial for detecting potential fraudulent

activities within credit card transactions. The variables are designed to capture different

dimensions of transaction data such as temporal patterns, geographic consistency, transaction

frequency, and monetary characteristics. These variables aim to highlight anomalies that might

indicate fraudulent behavior.

1. Entities.

a. Importance of entites

In fraud detection, the creation of variables based on entities is essential for developing

sophisticated and nuanced analytical capabilities. It enables deeper insights into individual and

group behaviors, supports customized risk management, and enhances the overall strategic

approach to preventing and detecting fraudulent activities. This entity-centric approach not only

Project 1: Fraud Detection 9 Duyen Tran

improves operational responses to fraud but also helps in adapting to evolving fraud tactics over

time. Here is why entities are crucial in creating meaningful variables for fraud detection:

Behavioral Analysis: By examining transactions at the entity level, we can identify unusual

patterns such as sudden increases in transaction frequency or size, which may indicate fraud.

Risk Segmentation: Entities allow for the segmentation of transaction data based on risk profiles.

This segmentation aids in applying tailored fraud detection strategies that optimize resources and

enhance detection accuracy.

Customized Controls: Using entity-specific variables supports the implementation of customized

monitoring systems. High-risk entities can be subjected to stricter controls while maintaining a

smoother experience for low-risk entities.

Collusive Fraud Detection: Entity analysis helps in identifying complex fraud schemes involving

multiple parties, which might not be evident when viewing data in aggregate.

Improved Predictive Modeling: Entity-specific data enhances predictive models by allowing

them to incorporate unique behavioral profiles, increasing their precision in distinguishing

between fraudulent and legitimate transactions.

b. Entities list

There is a list of 23 entites:

'Cardnum', 'Merchnum', 'card_merch', 'card_zip', 'card_state', 'merch_zip', 'merch_state',

'state_des', 'Card_Merchdesc', 'Card_dow', 'Merchnum_desc', 'Merchnum_dow',

'Merchdesc_dow', 'Card_Merchnum_desc', 'Card_Merchnum_Zip', 'Card_Merchdesc_Zip',

'Merchnum_desc_State', 'Merchnum_desc_Zip', 'merchnum_zip', 'Merchdesc_State',

'Merchdesc_Zip', 'Card_Merchnum_State', 'Card_Merchdesc_State'.

2. Variables creation

Project 1: Fraud Detection 10 Duyen Tran

Table 4: Variables creation

Description
Variables
Created

Cumulative
Count

Original Fields

The primitive fields in the dataset 10 10

Date of week target encoded

Display the day of the week and its corresponding the average fraud
percentage of that day 1 11

Geographic Variable

Distance between consecutive transactions for each card 1 12

New Zip Count

To track how often a new zip code appears for each entity which is if the
zip code changed from the previous transaction and ‘new zip count’
counting these changes per day for each entity 23 35

Velocity Change

Captures the rate of change in transaction amounts over successive
transactions for each entity 23 58

Recency

Days since the transaction by the entities was seen 23 81

Average Transaction Amount

The average transaction amount over the last 7 days of entities 23 104

Daily Cumulative Amount

Summing up the amount spent in a day can highlight days with unusually
high activity 23 127

Daily Transaction

Count of daily transactions for each entity 23 150

MoM Change in Avg Amount

the change in average transaction amount over a month compared to the
previous month for each entity 23 173

Project 1: Fraud Detection 11 Duyen Tran

Transaction by Merchant

Total number of transactions with the same merchant over the past 30 days 1 174

Transaction by day

Total number of transactions on this day up to this transaction 1 175

Merchant Risk Scores

Develop scores for merchants based on historical fraud rates 1 176

Frequency of transactions by Merchant

Counting the number of transactions that occur at each merchant 1 177

Average Transaction Amount at Merchant

The average transaction amount at each merchant 1 178

New Merchant Indicator

A binary variable (0 and 1), denotes whether the transaction with a
merchant occurred on the first recorded date or not 1 179

Merchant Return Frequency

Calculate how often returns occur at each merchant 1 180

Location Consistency

A binary variable checks whether most transactions at a merchant occur in
a consistent geographic location or not 1 181

Card Centrality

Measures the importance or influence of a particular card number within
the entire network of transactions. Degree centrality counts the number of
direct connections a node has, helping identify critical nodes that might be
central to operational flows or potential fraud schemes 1 182

Small Amount Flag

This feature identifies whether the transaction amount is unusually small
compared to typical transactions seen for that card 1 183

Low-value Transaction

Checking the frequency of low-value transactions 1 184

Project 1: Fraud Detection 12 Duyen Tran

Cluster Label

Identify natural groupings among transactions that might indicate different
types of purchasing behavior, risk level, or fraudulent activity 1 185

PCA

Represents the first/second principal component of the dataset derived
through Principal Component Analysis. It helps identify underlying
patterns in the transaction data that are not apparent in the raw data 2 187

Merch state_TE

Captures the potential risk associated with transactions from different
states 1 188

Merch zip_TE

Capture the average rate for each zip code based on the training dataset 1 189

Dow_TE

The average fraud rate for transactions that occurred on each particular
day across the training data 1 190

Maximum Amount Variables:

Maximum transaction amount for the given entity within
(0,1,3,7,14,30,60) days for 23 entities 161 351

Median Amount Variables

Median transaction amount for the given entity within 0,1,3,7,14,30,60
days for 23 entities 161 512

Total Amount Variables

The sum of all transaction amounts for the given entity within
(0,1,3,7,14,30,60 days) for 23 entities 161 673

Actual/Average Ratio

The ratio of the current transaction amount to the average amount over ('7',
'14', '30', '60' days) 161 834

Actual/Maximum Ratio

The ratio of the current transaction amount to the maximum amount over
('7', '14', '30', '60' days) 161 995

Project 1: Fraud Detection 13 Duyen Tran

Actual/Median Ratio

The ratio of the current transaction amount to the median amount over ('7',
'14', '30', '60' days) 161 1156

Actual/Total Ratio

The ratio of the current transaction amount to the total amount over ('7',
'14', '30', '60' days) 161 1317

Count by entity

Represents the normalized ratio of the transaction count for day type ‘d’(0
and 1) over a 1-day window, to the transaction over ‘dd’ day ('7', '14', '30',
'60' days) 184 1501

Tota amount by an entity

Represents the normalized ratio of the total transaction amount for day
type ‘d’(0 and 1) over a 1-day window, to the transaction over ‘dd’ day
('7', '14', '30', '60' days) 184 1685

Relative Velocity

Represents the normalized velocity to days ratio, where the velocity is
defined as the ratio of transaction counts for day type ‘d’(0 and 1) over a
1-day window, to the transaction over ‘dd’ day ('7', '14', '30', '60' days) 184 1869

Average Transaction Variability

Average difference in transaction amounts for the given entity over the
past [0, 1, 3, 7, 14, 30] days. 138 2007

Maximum Transaction Variability

Maximum difference in transaction amounts for the given entity over the
past [0, 1, 3, 7, 14, 30] days. 138 2145

Median Transaction Variability

Median difference in transaction amounts for the given entity over the past
[0, 1, 3, 7, 14, 30] days. 138 2283

Amount_cat

This variable splits transaction amounts into 5 bins with the same number
of data points but potentially different ranges. The bins labeled from 1 to 5 1 2284

Foreign 1 2285

Project 1: Fraud Detection 14 Duyen Tran

The binary variable (0 or 1) indicates whether that merchant is foreign or
not.

3. Fraud detection conceptual

- Temporal and Geographic Anomalies

+ Geographic Variable (Distance between consecutive transactions): Fraud often occurs when

stolen card details are used in different locations rapidly, which this variable can flag by

identifying transactions that are geographically too distant to be plausible within a short

timeframe.

+ New Zip Count: Changing a zip code frequently can be indicative of a fraudster testing the

card's validity across different merchant locations, often to avoid triggering fraud detection

systems that monitor geographic consistency.

- Transaction Behavior Anomalies

+ Velocity Change: A sudden increase in the rate of transaction amounts can indicate card

cloning or account takeover, where the fraudster is attempting to maximize the stolen card’s

limit.

+ Recency: If a card has not been used for a lengthy period, then suddenly has a flurry of

activity, this might suggest it has been compromised and activated by fraudsters.

+ Daily Cumulative Amount & Daily Transaction Count: These variables help detect burst

activity, which is a common fraud tactic where numerous transactions are processed in quick

succession before the card is blocked.

- Merchant-Based Anomalies

+ Transaction by Merchant & Merchant Return Frequency: Repeated transactions or frequent

returns at a single merchant might suggest collusion or refund fraud, where fraudsters

manipulate transaction processes for financial gain.

+ Merchant Risk Scores: Merchants with a history of fraud incidents are more likely to be

targets or participants in fraudulent schemes. This score helps prioritize scrutiny where it's

most needed.

- Financial Deviations
Project 1: Fraud Detection 15 Duyen Tran

+ Average/Median/Total/Maximum Amount Variables: Deviations from the norm in these

financial variables can indicate manipulation or unauthorized usage, as fraudsters may

attempt larger-than-usual transactions to maximize their gains.

+ Actual/Average/Maximum/Median/Total Ratios: These ratios highlight transactions that are

out of character for the cardholder, which can be an indicator of fraud if the current

transaction significantly deviates from historical patterns.

- Behavioral Indicators

+ Small Amount Flag & Low-value Transaction: Small amounts might be used initially to test

the stolen card’s validity before larger fraudulent transactions are made. This is a common

first step in a broader fraudulent strategy.

+ Card Centrality: In a network of transactions, a central card may indicate a hub of fraudulent

activity, especially if connected to other known fraud cases.

- Predictive and Analytical Insights

+ Cluster Label & PCA: These advanced analytical techniques help in segmenting transaction

data into groups with similar patterns. Certain clusters may exhibit behaviors typically

associated with fraud, such as similar amounts at similar times across multiple cards,

suggesting coordinated fraud rings.

+ Foreign: Transactions that occur in foreign countries may be subject to less stringent checks

and are often preferred by fraudsters looking to exploit these gaps.

- State and Zip Risk Levels

+ Merch state_TE and Merch zip_TE: Certain locations may have higher incidences of fraud

based on historical data, and transactions from these states or zip codes might warrant

additional scrutiny.

IV. Feature selection

Figure 7: Workflow of diagram - Feature Selection

Project 1: Fraud Detection 16 Duyen Tran

Feature selection in fraud detection is a critical process in which we identify the most relevant

variables from our dataset to use in building predictive models. The goal is to enhance the

model’s performance by reducing overfitting, improving accuracy, and decreasing training time.

Feature selection is particularly vital in fraud detection due to the complexity and high

dimensionality of transaction data, which often includes irrelevant and redundant information that

can obscure the significance of patterns of fraudulent behavior. [2]

In our endeavor to enhance the fraud detection capabilities of our predictive model, a critical step

was the effective selection of most informative features from a dataset initially containing 2,285

variables. This section provides a detailed account of our feautre selection process, discussing the

techniques used, the rationale of their selection and the implementation specifics that guided our

approach from beginning to end.

In general, feature selection technique can be broadly classified into three categories:

- Filter Methods: These methods apply a statistical measure to assign a scoring to each feature.

Features are ranked by the score and either selected to be kept or removed from the model.

Common statistics include correlation coefficients, Chi-square test, mutual information, and

Fisher’s score.

- Wrapper Methods: These methods consider the selection of a set of features as a search

problem, where different combinations are prepared, evaluated, and compared to other

combinations. A predictive model is used to score each combination of features and determine

which one performs best. Techniques include recursive feature elimination, sequential feature

selection algorithms, and genetic algorithms.

- Embedded Methods: These methods perform feature selection during the model training

process and are specific to given learning algorithms.

Project 1: Fraud Detection 17 Duyen Tran

Figure 8 : Feature selection process

1. Description of the process

Initial Filtering:

The feature selection process began with the application of the Kolmogorov-Smirnov (KS)

statistic, a powerful tool for determining the statistical significance between the distributions of

fraudulent and non-fraudulent transactions across each feature. This stage aimed to reduce the

vast array of features to a more manageable number by retaining only those with the highest

ability to distinguish between the two classes.

Advanced Feature Selection:

Following the initial reduction, the process transitioned to more sophisticated feature selection

techniques:

- Sequential Feature Forward Selection: Using a LightGBM model, this method involves

starting with the most significant feature and iteratively adding features that offer the most

substantial improvement to the model’s performance.

- Wrapper Methods: These methods assess subsets of features based on their collective impact

on the performance of the model, enhancing the predictive accuracy while avoiding

redundancy.

2. Rationale.

Project 1: Fraud Detection 18 Duyen Tran

Objective: To develop a robust fraud detection model by reducing the feature space from 2,285 to

the most relevant 20 features without compromising the model’s performance

The purpose of employing such rigorous feature selection methods was to enhance the model

performance by:

- Reducing Overfitting: Fewer features reduce the complexity of the model, which help in

minimizing overfitting and improving the generalizability of the model.

- Improving Acuracy: By focusing only on the most informative features, the model can

achieve higher accuracy with a streamlined st of input variables.

- Enhancing Efficiency: Fewer features mean reduced computational resources are required,

leading to faster training and prediction times, which is crucial for real-time fraud detection

systems.

- Maintaining Model Interpretability: With fewer features, it is easier to understand and

interpret the model's predictions, which is vital for gaining trust from stakeholders and for

regulatory compliance.

3. Implementation

a. Filter phase: Feature selection using KS statistic

- Data preprocessing

Before feature scoring, the dataset was preprocessed to ensure its integrity for the selection

process. Records that fell outside the project’s frame were excluded, and a ‘Random’ feature was

included to serve as a control

- Balancing Data

Given the typical imbalance between fraudulent and non-fraudulent transactions, a balancing step

was incorporated, conditional on the balance parameter, to equalize the influence of both classes

on the feature selection process

- Feature scoring results

Project 1: Fraud Detection 19 Duyen Tran

Each feature was scored using KS statistic, resulting in the following initial filter scores. We

identified a set of features with the highest scores, which indicates a stronger ability to distinguish

between the transaction classes

Filter Outcome: Reducing the features from 2,285 to 200 features with top KS scores

b. Wrapper selection phase

Model: LightGBM Classifier configured with 10 estimators and 3 leaves

Feature selection Strategy: Sequential Forward Selection (SFS) method, focusing on maximizing

the FDR at a 3% cutoff

Outcome: From 200 features, further reduced to the top 20 features which demonstrated the

highest predictive power and contribution to the model performance.

Table 5: Key Features Identified

Wrapper

Order Variable Filter Score

1 Cardnum_unique_count_for_card_state_1 0.476067

2 Card_Merchdesc_State_total_7 0.324668

3 Cardnum_count_1_by_30 0.428229

4 Cardnum_max_14 0.318826

5 Card_dow_vdratio_0by60 0.48648

6 Card_dow_vdratio_0by14 0.479086

7 Merchnum_desc_State_total_3 0.308586

8 Card_Merchdesc_total_7 0.324631

9 Card_dow_unique_count_for_merch_zip_7 0.418943

Project 1: Fraud Detection 20 Duyen Tran

10 Cardnum_actual/toal_0 0.47955

11 Card_dow_vdratio_0by7 0.467961

12 Cardnum_vdratio_1by7 0.466766

13 Cardnum_unique_count_for_card_state_3 0.46641

14 Cardnum_unique_count_for_card_zip_3 0.464323

15 Merchnum_desc_Zip_total_3 0.305656

16 Cardnum_unique_count_for_Merchnum_3 0.460748

17 Cardnum_actual/toal_1 0.459715

18 Cardnum_unique_count_for_card_state_7 0.445967

19 Cardnum_actual/max_0 0.445726

20 Card_dow_unique_count_for_merch_state_1 0.447357

Implementation Details:

+ Feature importance Evaluation: Post selection, feature importance was revisited to insure

the model leverages the most informative predictors.

+ Model stability: Evaluated through additional runs and tests to ensure consistent

performance across various sets and conditions (see more in Apendix 3, 4)

+ Deployment considerations: Prepared for integration into existing transaction processing

system, with considerations for real-time analysis and rapid scoring capabilities

V. Model exploration

This process details the outcomes of preliminary modeling efforts aimed at identifying optimal

hyperparameter configurations for various machine learning models in the context of fraud
Project 1: Fraud Detection 21 Duyen Tran

detection. The objective was to minimize overfitting while maximizing out-of-time (OOT)

performance to ensure robustness and reliability. The exploration included models such as

Logistic Regression, Decision Trees, Random Forest, LGBM, Catboost, Neural Networks, and

XGBoost, each tested across multiple iterations with varying settings (Table 6). Shortly, we will

start with a baseline logistic regression and then a number of nonlinear statistical/machine.

Project 1: Fraud Detection 22 Duyen Tran

Table 6: Model Exploration
Model Parameters Average FDR 3%

Logistic Regression

Itergration Penalty C Solver L1_ratio max_iter Train Test OOT Note
1 l2 0.1 lbfgs none 100 0.6796 0.6874 0.6874
2 l2 0.1 saga none 200 0.6804 0.6831 0.4663
3 l1 0.05 saga none 400 0.6789 0.6859 0.4710 Highest OOT
4 elasticnet 0.02 saga 0.5 300 0.6789 0.6859 0.4700 Smallest Gap + High OOT
5 elasticnet 0.5 saga 1 200 0.6811 0.6801 0.4680
6 l2 0.5 saga none 200 0.6802 0.6805 0.4667
7 l2 1 lbfgs none 1000 0.6818 0.6818 0.4663

Decision Tree

Itergration max_depth min_samples_split min_samples_leaf max_leaf_nodes Train Test OOT Note
1 None 2 1 10 0.6930 0.6784 0.4606
2 7 100 50 40 0.7454 0.7267 0.4946
3 30 100 50 50 0.7776 0.7351 0.5391
4 10 120 60 60 0.7540 0.7194 0.5397 Highest OOT
5 7 1000 30 10 0.6761 0.6773 0.4640
6 300 60 500 1000 0.6826 0.6751 0.4798

Random Forest

Itergration citerion n_estimator max_depth min_samples_split min_samples_leaf max_features bootstrap Train Test OOT Note
1 gibi 100 none 2 1 none TRUE 1.0000 0.8142 0.5165
2 entropy 200 10 40 2 sqrt TRUE 0.8667 0.7870 0.5710 Highest OOT
3 gini 150 5 300 30 log2 FALSE 0.7216 0.7220 0.4838
4 entropy 300 15 6 1 0.5 TRUE 1.0000 0.8257 0.5620
5 gini 100 20 200 100 0.25 TRUE 0.7300 0.7270 0.4923
6 gini 100 none 200 100 none TRUE 0.7533 0.7402 0.5104 Smallest Gap + High OOT

LBGM

Itergration num_leaves n_estimators max_depth min_data_in_leaf learning_rate bagging_fraction boosting_type Train Test OOT Note
1 40 300 3 10 0.1 0.8 gbdt 0.8712 0.7920 0.5222
2 64 200 10 50 0.05 0.7 dart 0.9011 0.8047 0.5327
3 256 500 20 100 0.005 0.9 goss 0.9121 0.8019 0.5562
4 4 none 30 none 0.01 none gbdt 0.7452 0.7332 0.5374 Smallest Gap + High OOT
5 10 30 5 30 0.02 0.6 gbdt 0.7331 0.7171 0.5135
6 20 40 7 70 0.01 0.9 goss 0.7655 0.7377 0.5596 Highest OOT

Catboost

Itergration l2_leaf_reg n_estimators max_depth min_data_in_leaf learning_rate verbose Train Test OOT Note
1 3 100 6 60 0.1 0 0.9703 0.8211 0.5212
2 6 500 8 60 0.02 0 0.7718 0.7532 0.5077 Smallest Gap + High OOT
3 3 200 6 30 0.05 0 0.9265 0.8203 0.5374
4 3 1000 4 20 0.03 0 0.8345 0.7937 0.5135
5 4 150 6 100 0.1 0 0.9629 0.8238 0.5222
6 3 250 5 50 0.07 0 0.9245 0.8117 0.5263 Highest OOT

Neural Network

Itergration solver hidden_layer_sizes activation alpha learning_rate max_iter Train Test OOT Note
1 adam (10, 12) relu 0.0001 constant 200 0.7400 0.7295 0.5040 Smallest Gap + High OOT
2 adam (3,2,5) relu 0.005 adaptive 300 0.7061 0.6972 0.4808
3 lbfgs (10,15) tanh 0.01 constant 40 0.7330 0.7184 0.4993
4 lbfgs (40,50) tanh 0.0001 adaptive 100 0.8057 0.7642 0.5108 Highest OOT
5 sgd (20,30) logistic 0.005 constant 300 0.6399 0.6518 0.4367
6 adam (10,12) relu 0.001 constant 200 0.7372 0.7219 0.4909

XGB

Itergration booster max_depth learning_rate n_estimator Train Test OOT Note
1 gbtree 3 0.1 100 0.7873 0.7710 0.5226 Smallest Gap
2 gbtree 6 0.05 30 0.7839 0.7538 0.5431 Highest OOT
3 gbtree 4 0.005 200 0.7317 0.7158 0.4933
4 gbtree 5 0.05 500 0.9300 0.8198 0.5357
5 gbtree 8 0.01 20 0.7771 0.7336 0.5212
6 gbtree 3 0.02 1000 0.8137 0.8160 0.5064

1. Methodology

a. Baseline Model

Figure 9: Workflow of diagram - Baseline Model

Logistic Regression

- Description: Logistic Regression is a statistical model that estimates the probability of a

binary outcome. It predicts the probability that a given input belongs to a particular category.

The model outputs probabilities by applying a logistic regression to a linear combination of

input features. The logistic function ensures that the output value falls between 0 and 1, which

makes it particularly suitable for modeling probability in binary classification tasks like fraud

detection where outcomes are typically categorical (e.g., fraud or not fraud). The logistic

function is defined as:

Where:

P: The probability that the dependent variable y is 1 given predictors x.

𝛽: The coefficients of the model.

x : Feature variables

In term of predicting model, logistic regression serves as excellent baseline model. Because it is

straightforward to implement and interpret, it’s often used as a starting point in predictive

modeling. Comparing its performance with mode complex models can help validate the

improvements offered by additional complexity.

Since fraud detection is typically a binary classification problem (fraud/no fraud), logistic

regression is naturally suited for such analysis. It models the probability that each transaction is

fraudulent, which is directly aligned with the goals of fraud detection.

Project 1: Fraud Detection 24 Duyen Tran

Figure 10: The concept of Logistic Regression Classification [3]

The figure 10 shows the fraud class takes in the value “1”, while the non-fraud class takes the

value “0”. A threshold of 0.5 is used to differentiate between the two class. For this study, the first

step is to build a baseline logistic regression using all variables from out feature selection process.

Table 6 below is a summary of main parameters of this logistic regression model

Project 1: Fraud Detection 25 Duyen Tran

Table 6: Logistic regression output on the training data

It is noticeable that “Card_Mechdesc_State_total_7”, “Card_Merchdesc_total_7”,

“Cardnum_actual/toal_0” and “Card_dow_vdratio_0by14” have p values higher than 0.05,

therefore, we excluded them out of the model since they are not statistically significant. The table

7 below is the output of final logistic regression

Table 7: Final Logistic Regression Output

Project 1: Fraud Detection 26 Duyen Tran

.

Figure 11: Performance of Logistic Regression Model

Figure 11 is a boxplot visualization taht shows the performance of servaral logistic regression

model, identified as log reg 1 through log reg 7, which are output of hyperparameter settings in

the table 5 above, using FDR score metric. Most models show relatively higher performance

during training and slightly drops during test set, indicating how well the model generlizes to

unseen data. It is noticable that setting 2 and setting 3 show more stability across different

datasets (training, testing and OOT), which might make them preferable for deployment given

their consistent performance

Table 8: Final choice of Logistic Regression Model

Hyperparamter

Penalty l1 L1_ratio none

C 0.005 max iter 400

Solver saga

Table 8 shows the final hyperparameter choice of Logistic Regession. Here is the breakdown if

each hyperparameter:

Project 1: Fraud Detection 27 Duyen Tran

- Penalty (l1): This specifies the norm used in the penalization. The L1 norm encourages

sparsity in the coefficients (many coefficients become zero). Using L1 penalty can help in

feature selection by eliminating some features entirely, as it applies a cost proportional to the

absolute value of the coefficients.

- C (0.005): This is the inverse of regularization strength. Smaller values specify stronger

regularization. In logistic regression, C controls the amount of shrinkage: the larger the C, the

less the model is regularized. A smaller C (such as 0.005) increases the regularization effect,

which can help prevent overfitting but might lead to underfitting if too small.

- Solver (saga) : This solver is an extension of sag (Stochastic Average Gradient descent) that

also supports the L1 penalty. It is often the solver of choice for large datasets as it is efficient

and can handle both L1 and L2 penalties. The saga solver is effective in scenarios where there

are many features or when data is sparse.

- L1_ratio (none): Typically, L1_ratio is used with elasticnet penalty, specifying the mix

between L1 and L2 penalties. A ratio of 1 corresponds to an L1 penalty, 0 to L2, and values in

between correspond to a combination of L1 and L2. The term none here might indicate that

this parameter is not used or relevant unless elasticnet is specified as the penalty.

- Max Iter (400): This parameter defines the maximum number of iterations taken for the

solvers to converge. A higher number of max_iter might be necessary for convergence in

cases where the optimization algorithm requires more iterations to find the minimum of the

loss function, especially for complex or very large datasets.

Figure 12: Confusion matrix of final choice logistic regression model
Project 1: Fraud Detection 28 Duyen Tran

b. Nonlinear Model

Figure 12: Workflow of diagram - Nonlinear Model

Decision Trees

A Decision tree is a flowchart-like structure in which each internal node represents a test on an

attribute(e.g.,whether a transaction amount is above a certain threshold), each branch represents

the outcome of the test, and each leaf node represents a class label (decision taken after

computing all attributes). The path from root to leaf represents classification rules. A Decision

Tree is a model that makes decisions by splitting data into branches based on feature values. Each

branch ends in a leaf that represents a class or prediction, resembling a flowchart where each

decision point is based on a feature.

-

Figure 13: Basic concept of Decision Tree Classification [4]

Why Use Decision Trees in Fraud Detection?

+ Handling of Complex Patterns: Decision trees can model complex relationships between

features without requiring transformation of variables or assumption about the distribution of

the data, unlike logistic regression or other parametric methods.

Project 1: Fraud Detection 29 Duyen Tran

+ Feature Selection: In constructing a decision tree, the algorithm automatically selects the

features that are most useful for classifying transactions. This inherent feature selection can

help identify the most effective predictors of fraud.

+ Versatility in Data Types: They can handle both numerical and categorical data. Fraud

detection datasets often contain a mix of data types, which decision trees can integrate without

extensive preprocessing.

+ Robustness to Outliers: Decision trees are relatively robust to outliers in the dataset. Since

each node focuses on a subset of data while splitting, outliers have less influence on the

overall model, unless they are numerous enough to appear consistent in their behavior across

splits.

+ Ease of Scaling and Updating: Trees can be easily updated with new data using algorithms

designed for decision tree induction without rebuilding from scratch, making them suitable for

dynamic environments like fraud detection where patterns can change over time.

+ Probabilistic Classification: While decision trees make hard classifications, they can also

estimate class probabilities based on the proportion of samples of each class in the leaves,

providing a measure of certainty in predictions which is useful for making decisions in

ambiguous cases.

Project 1: Fraud Detection 30 Duyen Tran

Figure 14: Performance of Decision Tree Model

Figure 14 is a boxplot visualization taht shows the performance of servaral Decision Tree model,

identified as DT 1 through DT 7, which are output of hyperparameter settings in the table 5

above, using FDR score metric. Models that show closer performance across training and test set

are generalizing. DT4 and DT5 seem to generalize better compared to others whereas DT2 and

DT 4 have higher OOT compared to others.

Table 9: Final choice of Decision Tree Model

Hyperparamter

max_depth 7 min_samples_leaf 50

min_samples_split 100 max_leaf_nodes 40

criterion entropy splitter best

Table 9 shows the final hyperparameter choice of Decision Tree. Here is the breakdown if each

hyperparameter:

Project 1: Fraud Detection 31 Duyen Tran

- Max_depth (7): This hyperparameter controls the maximum depth of the tree. The depth of a

tree is the length of the longest path from a root node down to the farthest leaf node. Setting

max_depth to 7 means that the tree can have at most seven splits from the root to the deepest

leaf. This limits the complexity of the model to prevent overfitting.

- Min_samples_leaf (50): This hyperparameter specifies the minimum number of samples that

must be present in a leaf node after splitting. Setting it to 50 means that each leaf node must

have at least 50 instances, encouraging the tree to be more generalized.

- Min_samples_split (100): This hyperparameter defines the minimum number of samples

required to split an internal node.Setting this parameter to 100 implies that no node will split

into two child nodes unless there are at least 100 instances in the node to split, promoting a

less complex and more robust model.

- Max_leaf_nodes (40): Specifies the maximum number of leaf nodes that the tree can have.

Having more leaves allows the model to capture more information about the data but can also

lead to overfitting. Setting max_leaf_nodes to 40 restricts the tree to have at most 40 leaves,

therefore controlling the model's complexity and potentially enhancing its ability to

generalize.

Figure 15: Confusion matrix of final choice decision tree model

Project 1: Fraud Detection 32 Duyen Tran

Random Forest

Random Forest improves on the Decision Tree model by creating an ensemble of many trees and

aggregating their predictions to decide the final output. This process is known as "bagging" or Bootstrap

Aggregating.

Figure 16: Random Forest Concept [5]

Based on figure 15, we can see how example is classifier where the final prediction is done by

taking a vote from all n trees. The random forest algorithm is made up of a collection of decision

trees, and each tree in the ensemble is comprised of a data sample drawn from a training set with

replacement, called the bootstrap sample. Of that training sample, one-third of it is set aside as

test data, known as the out-of-bag (oob) sample, which we’ll come back to later. Another instance

of randomness is then injected through feature bagging, adding more diversity to the dataset and

reducing the correlation among decision trees. Depending on the type of problem, the

determination of the prediction will vary. For a regression task, the individual decision trees will

be averaged, and for a classification task, a majority vote—i.e. the most frequent categorical

variable—will yield the predicted class. Finally, the oob sample is then used for cross-validation,

finalizing that prediction.

- Why use Random Forest in Fraud Detection:

+ Enhanced Accuracy and Stability: Random Forest inherently manages biases and variances

by building multiple trees, making it significantly more accurate and stable than individual

decision trees. This is crucial in fraud detection, where the cost of false predictions can be

high.

Project 1: Fraud Detection 33 Duyen Tran

+ Effective in Large and Complex Data Sets: Given the complex nature of fraud detection,

which often involves large volumes of data and many input variables, Random Forest’s

capability to handle large and complex data sets makes it highly effective.

+ Feature Importance: It ranks the importance of different attributes for classification decisions.

This feature importance score helps to identify significant predictors of fraud, contributing to

more targeted and efficient investigative efforts.

+ Versatility in Data Handling: Random Forest can handle data with various types of variables

(binary, categorical, or numerical). This versatility is particularly beneficial in fraud

detection, where different types of data need to be analyzed together.

+ Minimizing Overfitting: While decision trees can overfit data, the ensemble nature of

Random Forest minimizes this risk, making the model generalize better to new, unseen data.

+ Adaptive to Evolving Tactics: Fraudulent tactics evolve, and models need to adapt quickly.

Random Forest models can be retrained with new data without starting the learning process

from scratch, adapting more quickly to new patterns of fraud than many other algorithms.

Figure 17: Performance of Random Forest Model

Figure 16 is a boxplot visualization taht shows the performance of servaral Random Forest model,

identified as RF 1 through RF 7, which are output of hyperparameter settings in the table 5 above,

Project 1: Fraud Detection 34 Duyen Tran

using FDR score metric. It’t noticeable that RF 5 and RF 6 seem to generalize better compared to

others.

Table 10: Final choice of Random Forest Model

Hyperparamter

n_estimators 100 min_samples_leaf 100

max_depth none min_samples_plit 200

criterion gini max_features none

boostrap True

Table 10 shows the final hyperparameter choice of Random Forest Model. Here is the breakdown

if each hyperparameter:

- N_estimators (100): This hyperparameter defines the number of trees in the forest. Increasing

the number of trees increases the robustness of the model, as the ensemble's predictions are

based on the average of the predictions from all trees. However, more trees also mean higher

computational cost and diminishing returns after a certain point.

- Min_samples_leaf (100): Similar to a single Decision Tree, this parameter sets the minimum

number of samples required to be at a leaf node. A larger min_samples_leaf results in a more

significant constraint on the growth of each tree, reducing the risk of overfitting by ensuring

that each leaf node generalizes well to new data.

- Max_depth (none): Specifies the maximum depth of each tree in the forest. If set to none,

there is no limit on the depth of the trees, allowing them to grow until all leaves are pure or

contain less than min_samples_split samples.

- Min_samples_split (200): This parameter determines the minimum number of samples

required to split an internal node. Setting this parameter to a higher value can prevent the

model from learning overly fine distinctions, thus reducing the model's variance but

potentially increasing its bias.

- Criterion (gini): The function used to measure the quality of a split. gini refers to Gini

impurity, a measure used for calculating the probability of a randomly chosen element being

incorrectly classified.

Project 1: Fraud Detection 35 Duyen Tran

- Max_features (none): The number of features to consider when looking for the best split. If

none, then max_features=n_features is considered, meaning that all features are used to make

each split in a tree. Setting this parameter can control how much each tree in the forest is

randomized and how each tree is different from the others, which can influence the diversity

within the forest.

- Bootstrap (True): Whether bootstrap samples are used when building trees. If True, each tree

in the forest is built from a bootstrap sample (i.e., a sample taken with replacement) from the

data. Using bootstrap sampling means that each tree in the forest is slightly different and can

capture various aspects of the data, enhancing the model's generalization capability.

Figure 18: Confusion matrix of final choice Random Forest model

LGBM (Light Gradient Boosting Machine)

LGBM is an advanced type of Gradient Boosting algorithm that builds one tree at a time. Each

new tree helps to correct errors made by the previous trees. It's designed to be efficient and faster,

especially on large datasets. The "light" in LightGBM refers to its high speed and efficiency,

which is achieved through techniques like Gradient-based One-Side Sampling (GOSS) and

Exclusive Feature Bundling (EFB), which reduce memory usage and increase the speed of

computation.

Project 1: Fraud Detection 36 Duyen Tran

Figure 20: Tree growth workflow of LGBM model [6]

- Application in Fraud Detection

+ High Performance on Imbalanced Data: Fraud detection often deals with highly

imbalanced datasets where fraudulent transactions are much rarer compared to

non-fraudulent ones. LightGBM excels in scenarios with imbalanced data by focusing on

harder cases that have larger gradients, thus improving model’s ability to detect anomalies.

+ Efficient Processing of Large Datasets: In fraud detection, datasets often encompass

millions of transactions. LightGBM's efficient use of system resources allows it to handle

large volumes of data without the need for extensive hardware, making it a cost-effective

solution.

+ Quick Iteration and Adaptability: Fraud patterns can change rapidly, requiring models that

can be quickly retrained with new data. LightGBM’s training efficiency enables faster

retraining and adaptation to new fraud patterns as they develop.

+ Enhanced Predictive Accuracy: By leveraging gradient boosting, LightGBM can model

complex nonlinear relationships within the data that are typical in fraud detection

scenarios. This results in higher detection rates of fraudulent transactions.

+ Real-Time Fraud Detection: LightGBM’s fast execution speed makes it suitable for

real-time fraud detection systems, where decisions must be made quickly to prevent

fraudulent transactions from being processed.

Project 1: Fraud Detection 37 Duyen Tran

Figure 21: Performance of Light GBM Model

Figure 21 is a boxplot visualization taht shows the performance of servaral Light GBM model,

identified as LGBM 1 through LGBM 7, which are output of hyperparameter settings in the table

5 above, using FDR score metric. It’t noticeable that LGBM 5 and LGBM 4 seem to generalize

better compared to others.

Table 11: Final choice of LGBM Model

Hyperparamter

num_leaves 4 min_data_in_leaf 60

max_depth 30 learning_rate 0.02

boosting_type gbdt

Table 10 shows the final hyperparameter choice of LGBM Model. Here is the breakdown if each

hyperparameter:

- Num_leaves (4): This hyperparameter sets the maximum number of leaves that can be formed

in each tree. LightGBM constructs trees vertically, meaning that leaf-wise tree growth

strategies are employed rather than level-wise tree growth strategies. A smaller number of

leaves restricts the complexity of the model, reducing overfitting risks. It makes the model

more robust by simplifying the learned structures.

Project 1: Fraud Detection 38 Duyen Tran

- Min_data_in_leaf (60): This parameter is a threshold for the number of samples that must be

present in a leaf. This is analogous to min_samples_leaf in scikit-learn's tree-based models.

Setting this value higher can prevent the model from creating too fine-grained leaves, thereby

controlling overfitting. It ensures that leaves have more than just a few data points, thus

generalizing better.

- Max_depth (30): Specifies the maximum depth of trees being built. Despite LightGBM

typically being leaf-wise, setting a max depth can help prevent overly deep and complex trees.

A depth of 30 is quite high, which allows considerable model complexity. Depending on the

dataset, this might need adjustment to avoid overfitting.

- Learning_rate (0.01): Also known as the shrinkage rate, this influences the rate at which the

model learns. A lower learning rate requires more trees to be effective but can result in a more

robust model as it gives more opportunity for the model to correct its mistakes in the previous

trees. A learning rate of 0.01 is relatively low, leading to slower training but potentially better

long-term accuracy and less risk of overfitting.

- Boosting_type (gbdt): Specifies the algorithm to use for boosting. gbdt stands for Gradient

Boosted Decision Trees, a popular method that uses tree models and optimizes a differentiable

loss function.This type is effective for a range of regression and classification problems,

offering a good balance between speed and accuracy.

Project 1: Fraud Detection 39 Duyen Tran

Figure 22: Confusion matrix of final choice LGBM model

Catboost

Catboost is a type of Gradient Boosting algorithm too but optimized to handle categorical

variables directly. It transforms these variables in a way that allows the model to get more

accurate results faster without extensive data preprocessing. The CatBoost algorithm is an

improvement in the framework of the GBDT algorithm. It effectively solves the problem of

gradient bias and prediction shift, avoids the occurrence of overfitting, and improves calculation

accuracy and generalization ability (figure 23) The details are as follows.

Project 1: Fraud Detection 40 Duyen Tran

Figure 23: The structure of the Catboost algorithm [7]

- Application in Fraud Detection

+ Superior Handling of Categorical Data: Fraud detection systems often deal with various categorical

features such as user IDs, merchant categories, and transaction locations. CatBoost's ability to

handle categorical data directly is invaluable because it minimizes data leakage and preserves the

integrity of the data’s original structure.

+ Enhanced Predictive Performance: CatBoost achieves high accuracy and speed in training even on

complex and noisy data, characteristics common in fraud detection datasets. Its sophisticated

algorithms optimize the model’s performance without extensive hyperparameter tuning.

+ Prevention of Overfitting: In fraud detection, where new, unseen data patterns frequently emerge,

the robustness of CatBoost against overfitting ensures that models remain predictive over time and

do not just memorize training data.

+ Adaptability to New and Emerging Fraud Patterns: CatBoost can be quickly updated with new data,

allowing models to adapt to emerging fraud patterns. This adaptability is crucial for keeping the

fraud detection system effective against the continually evolving tactics used by fraudsters.

+ Real-Time Prediction Capability: Given its efficiency and performance, CatBoost can be deployed

in real-time environments where decisions need to be made rapidly, such as in online transaction

processing.

Project 1: Fraud Detection 41 Duyen Tran

Figure 24: Performance of Catboost Model

Figure 24 is a boxplot visualization that shows the performance of servaral Catboost model,

identified as Catboost 1 through Catboost 7, which are output of hyperparameter settings in the

table 5 above, using FDR score metric. It’t noticeable that Catboost 2 seem to generalize better

compared to others.

Table 12: Final choice of Catboost Model

Hyperparamter

l2_leaf_reg 6 min_data_in_leaf 60

n_estimators 500 learning_rate 0.02

max_depth 8 verbose 0

Table 12 shows the final hyperparameter choice of Catboost Model. Here is the breakdown if each

hyperparameter:

- L2_leaf_reg (6): This parameter specifies the coefficient for L2 regularization on the weights.

L2 regularization helps in reducing model complexity and fighting overfitting by penalizing

large weights. Setting l2_leaf_reg to 6 means that the regularization term will effectively

shrink the weights, thus preventing the model from fitting too closely to the training data.

Project 1: Fraud Detection 42 Duyen Tran

- Min_data_in_leaf (60): Similar to other tree-based models, this parameter sets the minimum

number of samples (data points) required to form a leaf. This helps in preventing the tree from

growing too deep and complex, which can lead to overfitting. A minimum of 60 samples per

leaf ensures that each decision made by the tree captures enough data to be statistically

significant, enhancing the model's generalization capabilities.

- n_estimators (500): Defines the number of trees to be built in the model. More trees can

improve the accuracy but also increase the risk of overfitting if not controlled by other

parameters like learning_rate and max_depth. With 500 trees, the model is allowed to learn

complex patterns from the data, but it requires careful tuning of other parameters to maintain a

balance between bias and variance.

- learning_rate: 0.02: Determines the step size at each iteration while moving toward a

minimum of a loss function. A lower value makes the boosting process more conservative,

reducing the risk of overfitting by making the model more robust at the expense of needing

more trees to converge. A learning rate of 0.02 helps ensure that each additional tree improves

the model gradually, allowing for more fine-grained adjustments to the model.

- Max_depth (8): This parameter limits the depth of each tree. It's one of the most direct

controls over the model complexity. A lower max_depth can significantly reduce the model's

overfitting potential by limiting how detailed the learned patterns can be. A depth of 8 strikes

a balance, allowing the model to learn complex patterns but not so deep as to fit to noise in the

training data.

- Verbose (0): Controls the verbosity of the model's training process. A value of 0 means that

the model will not output any training progress or potentially any other messages into the

console, which is useful for keeping the output clean especially when automating the training

process over many iterations. Setting verbose to 0 is particularly useful in production or when

running multiple models in a batch process where output logs might clutter the process

information.

Project 1: Fraud Detection 43 Duyen Tran

Figure 25: Confusion matrix of final choice Catboost model

Neural Networks

Neural Networks are inspired by the human brain and consist of layers of interconnected

"neurons" that can learn complex patterns from data. They are highly flexible and can be used for

a wide range of tasks from regression to classification and more advanced applications like image

and speech recognition.

Figure 26: Neural networks architecture [8]

Project 1: Fraud Detection 44 Duyen Tran

The structures and operations of human neurons serve as the basis for artificial neural networks. It

is also known as neural networks or neural nets. The input layer of an artificial neural network is

the first layer, and it receives input from external sources and releases it to the hidden layer, which

is the second layer. In the hidden layer, each neuron receives input from the previous layer

neurons, computes the weighted sum, and sends it to the neurons in the next layer. These

connections are weighted means effects of the inputs from the previous layer are optimized more

or less by assigning different-different weights to each input and it is adjusted during the training

process by optimizing these weights for improved model performance.

- Why use it in fraud detection:

+ Handling High-Dimensional Data: Neural networks are particularly useful in fraud

detection due to their ability to manage high-dimensional and diverse data from multiple

sources. They can process and integrate various types of data such as transaction amounts,

user behavior, and merchant information, all of which are critical in detecting fraudulent

activities.

+ Learning Complex and Non-linear Relationships: The complexity of fraudulent

transactions, which often involve subtle and non-linear interactions between variables, can

be effectively modeled with neural networks. Their layered structure enables them to learn

even the most intricate patterns that might indicate fraud.

+ Real-Time Processing: Neural networks, especially those designed for efficiency such as

convolutional neural networks (CNNs) or recurrent neural networks (RNNs), can process

information in real-time, making them ideal for applications that require immediate fraud

detection, such as credit card transactions or online banking.

+ Continuous Learning and Adaptation: With capabilities to update their weights and biases

in response to new data, neural networks can adapt over time, learning from new

fraudulent tactics as they develop and thus continuously improving their predictive

accuracy.

+ Anomaly Detection: They are particularly effective in anomaly detection, which is a core

component of fraud detection. Neural networks can be trained to recognize 'normal'

patterns and, subsequently, to flag deviations from these patterns as potential fraud

Project 1: Fraud Detection 45 Duyen Tran

Figure 27: Performance of Neural Network Model

Figure 27 is a boxplot visualization taht shows the performance of servaral Neural Network

model, identified as NN 1 through NN 7, which are output of hyperparameter settings in the table

5 above, using FDR score metric. It’t noticeable that NN 1 seem to generalize better compared to

others.

Table 13: Final choice of Neural Network Model

Hyperparamter

hidden_layer_sizes (10, 12) max_iter 200

activation relu learning_rate constant

alpha 0.0001 solver adam

Table 13 shows the final hyperparameter choice of Neural Network Model. Here is the breakdown

if each hyperparameter:

- hidden_layer_sizes: (10, 12)This setting specifies the structure of the hidden layers within the

network. The notation (10, 12) indicates that the neural network has two hidden layers, where

the first layer contains 10 neurons, and the second layer contains 12 neurons. The arrangement

of hidden layers and their respective sizes significantly affects the network's capacity to model

Project 1: Fraud Detection 46 Duyen Tran

complex relationships in the data, influencing both the learning capabilities and computational

demands.

- max_iter: 200. This parameter determines the maximum number of epochs, which are

complete passes over the entire training dataset, that the optimizer will execute during

training. A higher number of iterations allows more opportunities for the network to learn

from the data, but setting it too high can lead to overfitting, especially if the training loss

continues to decrease while validation performance deteriorates.

- activation: relu: This refers to the activation function used for the neurons in the hidden

layers. The Rectified Linear Unit (ReLU) function is commonly used because it helps prevent

the vanishing gradient problem and generally allows models to learn faster and perform better.

+ ReLU is defined as:

𝑓(𝑥)=max (0,𝑥)

f(x)=max(0,x) and is particularly effective at introducing non-linearity into the network,

enabling it to capture more complex patterns.

- learning_rate: constant. This setting specifies that the learning rate during the training process

remains constant, as opposed to being adaptive or employing a decay mechanism. Using a

constant learning rate can simplify the training dynamics, but it may require careful tuning to

strike a balance between convergence speed and stability.

- alpha: 0.0001. This is the L2 regularization parameter, which helps control overfitting by

penalizing large weights in the model's parameters. A non-zero alpha encourages the weights

to remain small, which can simplify the model and improve generalization. The specified

value (0.0001) provides a moderate amount of regularization, helping to prevent overfitting

without significantly detracting from the model's ability to fit the training data.

- solver: adam. The solver 'adam' refers to the optimization algorithm used for weight updates

in the training process. Adam (Adaptive Moment Estimation) is an extension to stochastic

gradient descent that has become popular for training deep neural networks. Adam combines

the advantages of two other extensions of stochastic gradient descent: AdaGrad and

RMSProp. It computes adaptive learning rates for each parameter by keeping track of the first

and second moments of the gradients, facilitating efficient and effective convergence,

especially on complex datasets and architectures.
Project 1: Fraud Detection 47 Duyen Tran

Figure 28: Confusion matrix of final choice Neural Network model

XGBoost (Extreme Gradient Boosting)

XGBoost stands for "Extreme Gradient Boosting" and is an advanced implementation of gradient

boosting that has gained popularity due to its speed and performance. XGBoost is a

decision-tree-based ensemble Machine Learning algorithm that uses a gradient boosting

framework. At its core, XGBoost is an algorithm that sequentially builds an ensemble of shallow

trees, with each new tree correcting errors made by the previously trained trees.

Figure 29: XGBoost Architecture [9]

Why Use It in Fraud Detection:
Project 1: Fraud Detection 48 Duyen Tran

+ High Predictive Power: XGBoost is renowned for delivering highly accurate models,

which can capture complex nonlinear patterns in data. This is essential in fraud detection,

where fraudulent behaviors can be subtle and complex.

+ Scalability: Given the large volumes of data typically involved in fraud detection,

XGBoost's scalability ensures that it can handle such datasets efficiently without

compromising on speed or performance.

+ Feature Importance: XGBoost provides straightforward metrics to evaluate the importance

of different features in making predictions. This insight is crucial in fraud detection to

identify which variables are most predictive of fraudulent activity and to refine the models

based on those insights.

+ Model Robustness: With its built-in regularization and cross-validation capabilities,

XGBoost models are generally robust and less likely to overfit, making them reliable for

deployment in critical applications like fraud detection.

+ Flexibility: XGBoost can be tuned with a wide range of hyperparameters that control the

model's complexity and learning process, allowing fraud detection systems to be finely

adjusted to optimize performance.

Figure 30: Performance of XGBoost Model

Figure 30 is a boxplot visualization taht shows the performance of servaral XGBoost model,

identified as XGB 1 through XGB 7, which are output of hyperparameter settings in the table 5

Project 1: Fraud Detection 49 Duyen Tran

above, using FDR score metric. It’t noticeable that XGB 1 seem to generalize better compared to

others.

Table 14: Final choice of XGBoost Model

Hyperparamter

booster gbtree max_depth 3

n_estimatore 100 learning_rate 0.1

Table 14 shows the final hyperparameter choice of Neural Network Model. Here is the breakdown

if each hyperparameter:

+ booster: gbtree. The booster parameter specifies the type of model to run at each iteration.

The option gbtree indicates that the model uses tree-based models as base learners. This is

the most commonly used and typically most powerful XGBoost model type, suitable for a

variety of prediction tasks.Tree-based boosters are capable of modeling complex

relationships in data by constructing decision trees in a sequential manner where each new

tree corrects errors made by the previous ones.

+ max_depth: 3. This parameter sets the maximum depth of each tree. It is used to control

overfitting as higher depth will allow the model to learn relations very specific to a

particular sample. A max_depth of 3 means the trees are relatively shallow and can

prevent the model from becoming overly complex and overfitting the training data. It

limits the interaction of variables to simple combinations, which can be beneficial for

generalization.

+ n_estimators: 100. This defines the number of boosting rounds or trees to build. Contrary

to random forests, where a higher number of trees are always better, XGBoost will

eventually start overfitting if trained with too many trees. Setting n_estimators to 100

provides a good balance, allowing the model to learn from the data sufficiently without

excessive computation or risk of fitting too closely to the training data noise.

+ learning_rate: 0.1. Also known as the "shrinkage" or "eta", this parameter scales the

contribution of each tree by a factor to reduce overfitting. A lower value makes the model

robust to the specific structure of the tree and makes improvements robustly but slowly. A

learning rate of 0.1 means that each tree’s contribution is scaled down by 10%, helping to

prevent overfitting and allowing more robust learning across many boosting rounds.
Project 1: Fraud Detection 50 Duyen Tran

Figure 31: Confusion matrix of final choice XGBoost model

2. Model Result

Table 15: Model results on training, testing and OOT

Model Train Test OOT

Logistic
Regression 0.6789 0.6859 0.4710

Decision Tree 0.7454 0.7267 0.4946

Random Forest 0.7533 0.7402 0.5104

LGBM 0.7452 0.7332 0.5374

Neural Network 0.7400 0.7295 0.5040

Catboost 0.7718 0.7532 0.5077

XGBoost 0.7873 0.7710 0.5226

Project 1: Fraud Detection 51 Duyen Tran

Figure 32: All final models performance

Table 15 and figure 32 showing the results of all final model performance. In the model

exploration results, several models were assessed across training, testing, and out-of-time (OOT)

data sets to evaluate their performance and suitability for deployment. The analysis revealed that

while simpler models like Logistic Regression performed modestly, they struggled particularly

with OOT data, suggesting limited capability to capture complex patterns. Decision Trees and

Neural Networks showed moderate performance, but the standout models were ensemble and

boosting techniques, such as Random Forest, LGBM, Catboost, and XGBoost. These models

demonstrated higher consistency and robustness, with XGBoost displaying the best overall

performance with the highest scores in training, testing, and crucially, OOT scenarios. Obviously,

XGBoost should be the final choice for next step. This choice reflects a commitment to deploying

a model that not only performs well on historical data but also maintains its effectiveness on

future, unseen data.

Justification for Selecting XGBoost:

XGBoost has demonstrated high performance across training and testing phases, and most

importantly, it has excelled in the OOT dataset, which is crucial for predicting future events

accurately. This model's ability to handle large datasets efficiently and its faster training times

compared to other ensemble methods make it particularly suitable for operational environments

where quick decision-making is essential. Moreover, XGBoost is known for its ability to perform

Project 1: Fraud Detection 52 Duyen Tran

exceptionally well on structured data across various industries and problem types, including fraud

detection.

VI. Final Model Performance

Figure 33: Workflow of diagram - Implement Model

These three tables below show the model performance statistic of three dataset (Table 16 of

training dataset, Table 17 of testing dataset, Table 18 of OOT dataset), providing a detailed

breakdown of results across various percentile bins. The OOT results, which are crucial for

understanding how the model might perform in a real-world scenario, reveal that the FDR across

the top bins (1-5) remains relatively high, suggesting that the model effectively prioritizes

transactions with a higher likelihood of being fraudulent. The cumulative statistics indicate an

increasing capture rate of fraudulent transactions as we move through the bins, which is a

desirable property in a fraud detection system. The model exhibits stability across the training and

testing datasets but shows variation in the OOT dataset, particularly in the lower bins where the

fraud rate dips significantly. This could indicate potential overfitting or model degradation over

time, necessitating continuous monitoring and recalibration. Specifically, the cumulative statistics

for the OOT dataset reveal an FDR (Fraud Detection Rate) of 5%, indicating that setting the

fraud score threshold at this level could potentially identify about 69.36% of all fraudulent

transaction attempts. A 5% cutoff implies that the top 5% of transactions, ranked by their

likelihood of fraud, would be declined. It's important to note that the FDR at 5% varies from the

values presented in Table 15, which represents the average FDR from more than ten runs per

dataset, whereas the FDR mentioned here is derived from a single run during the development of

the XGBoost model.

Project 1: Fraud Detection 53 Duyen Tran

Table 16: Training results

Table 17: Testing results

Project 1: Fraud Detection 54 Duyen Tran

Table 18: OOT results

Figure 33: Financial implications in fraud detection system

Figure 33 presents the financial implication of different cutoff setting in a fraud detection system

with three key metrics: The greenline represents cumulative fraud savings. This line shows the

total amount saved by preventing fraud through the detection system up to each respective

percentile cutoff; the redline represents cumulative losses due to false positives (FP), where

legitimate transactions are incorrectly flagged as fraudulent, potentially leading to lost revenue or

customer dissatisfaction; and finally the blueline represents the net savings, calculated as the

Project 1: Fraud Detection 55 Duyen Tran

difference between the fraud savings and the losses due to false positives. The green line's steep

initial rise indicates that a significant amount of fraud is being caught and prevented in the lowest

5% of the scoring range, which demonstrates the effectiveness of the model in identifying

high-risk transactions. This implies that the most fraudulent activities are effectively prioritized

by the model within this segment. The red line shows a gradual increase, suggesting that the cost

due to false positives is accumulating, but at a slower rate compared to the savings from fraud

detection. This is expected as any effective fraud detection system will inevitably produce some

false positives. Up until the 5% cutoff, the blue line increases, indicating that the overall savings

from fraud prevention outweigh the losses from false positives. Beyond the 5% cutoff, the overall

savings appear to plateau and even decrease slightly, suggesting diminishing returns from setting

a more lenient cutoff.

Based on the data, the 5% cutoff is effective in maximizing the fraud savings while controlling

losses from false positives. This cutoff ensures that a significant portion of the fraud is captured

while keeping the cost of false positives manageable. The overal saving of the 5% cutoff is

estimated to be $44,568,000.0 and the maximum possible saving of fraud detection using this

model is $49,284,000.0

VII. Conclusions and Further Work

In this project, we developed a comprehensive fraud detection model using a methodical approach

outlined in five primary stages: data preparation, feature engineering, feature selection, model

evaluation and implementation. The culmination of this project in the deployment of an

XGBoost-based fraud detection model represents a significant step forward in safeguarding our

operations against fraudulent activities. The model’s performance, evidenced by substantial

potential savings and a strategic 5% cutoff point, highlights its effectiveness in identifying

high-risk transactions with precision.

This project’s success can be attributed to a methodical approach to the analytics lifecycle, from

initial data handling to advanced model tuning, which explores the application of linear and

nonlinear statistical and machine learning models. Notably, nonlinear models demonstrated

superior capabilities compare to linear regression, indicating their effectiveness in handling

complex and non-linear relationships inherent in our data. Random Forest, LGBM emerged as a

strong contender with highest OOT performance which suggests their robustness in generlizing to

unseen data, However, a significant gap between its training and testing performance raises

concerns about potential overfitting. This discrepancy implies that while the model is highly
Project 1: Fraud Detection 56 Duyen Tran

accurate on known data, its complexity may cause it to perform inconsistently on new, unseen

data sets.By choosing XGBoost, we leveraged an algorithm known for its high efficiency and

scalability, which proved essential given the complexity and volume of our transaction data, it can

detect about half of fraud attempts within only top 5% that was sorted as suspicious by the fraud

algorithm score, estimated to be $44,568,000.00 overal saving. The optimized model not only

enhances our preventive measures but also aligns with our commitment to continuous

improvement in our risk management strategies

Furthermore, the insights gained from this project extend beyond immediate financial benefits.

They reinforce the importance of advanced analytics in strategic decision-making, providing a

blueprint for addressing similar challenges across different facets of our business. The model’s

ability to cut through noise and identify genuine threats allows us to allocate resources more

effectively, ensuring both operational efficiency and customer trust.

Looking ahead, the journey of enhancing our fraud detection capabilities is far from complete.

The dynamic nature of fraud, coupled with evolving technologies, necessitates ongoing

adaptations and innovations in our approaches. Further explorations into machine learning and

artificial intelligence could yield even more sophisticated modeling techniques. Additionally,

incorporating feedback loops into the model's architecture can facilitate adaptive learning,

ensuring the model remains effective as fraud tactics change.

Expanding the scope of our data integration to include more diverse and real-time data sources

could also unveil new patterns and trends in fraud, providing earlier warnings and more nuanced

understanding of risk factors. Collaborations with industry experts and participation in fintech

innovations will further enhance our capabilities and keep us at the forefront of fraud prevention

technologies.

By building on the foundations laid by this project and continually striving for excellence in our

analytical capabilities, we can ensure the security and integrity of our transactions, safeguarding

both our assets and our customers' trust.

Project 1: Fraud Detection 57 Duyen Tran

Apendix 1: Data Quality Report

1. Data description

The dataset contains transaction records from credit card usage. It originates from a synthetic

dataset representative of real U.S. credit card transactions over 10 years. The dataset comprises

97,852 records and 10 fields, covering transactions from 01/01/2010 to 12/31/2010. The fields

are a mixture of numeric and categorical types, including identifiers, transaction details, merchant

information, and a fraud indicator.

2. Summary Tables

Numeric Fields Table

Field
Name

#
Records
Have
Values

%
Populated

#
Zeros

Min Max Mean Std
Dev

Most
Common
Value

Date 97,852 100.00% 0 1/1/10 12/31/10 NA NA 2/28/10

Amount 97,852 100.00% 0 0.01 3,102,045.53 425.47 9949.8 3.62

Categorical Fields Table

Field Name # Records
with Values

% Populated # Zeros # Unique
Values

Most Common
Value

Recnum 97,852 100.00% 0 97,852 1

Cardnum 97,852 100.00% 0 1,645 5142148452

Merchnum 94,455 96.52% 3,397 13,091 930090121224

Merch description 97,852 100.00% 0 13,126 GSA-FSS-ADV

Merch zip 92,149 95.19% 4,703 4,568 38118

Merch state 96,649 98.77% 1,203 227 TN

Transtype 97,852 100.00% 0 4 P

Fraud 97,852 100.00% 95,805 2 0

3. Visualization of Each Field

Project 1: Fraud Detection 58 Duyen Tran

1) Recnum

Description: Ordinal unique positive integer for each transaction record, from 1 to

97,852.

2) Date

Description: The transaction's date, is formatted as a string (e.g., ‘1/1/10’).

The first distribution shows the number of transactions per day over a year. The graphs display

significant variability of transaction counts from day to day. While there are fluctuations, there

does not appear to be a clear long-term upward or downward trend throughout the year.

Moreover, the continuous nature of the line suggests that the transaction data is complete across

the period with obvious gaps. This is a positive sign of data integrity in terms of completeness

Project 1: Fraud Detection 59 Duyen Tran

The second distribution shows the number of transactions recorded each week over the course

of a year, from January 2010 through January 2011. There seems to be a pattern that could

suggest seasonal trends, with transaction counts rising and falling at certain times of the there.

For example, there are peaks that might correspond to seasonal events where transaction activity

is higher.

There are a few sharp drops in transaction counts, such as a noticeable dip toward the end of the

year. This could be due to various reasons like holidays when businesses are closed or it could

indicate missing data or other data collection issues. The transaction count starts at a lower

point, rises to a plateau with some fluctuations, and then shows a downward trend toward the

end of the year. It would be important to determine if this is a typical pattern for the business or

if there are external factors that may have influenced these trends

The consistency in weekly transactions, apart from the anomalies, suggests good data quality.

However, the sharp increases or decreases warrant further investigation to confirm whether they

represent true business activity or data issues

The third distribution shows the date with the top 20 transaction volume. There is a relatively

small variation in the transaction counts among the top dates, ranging from around 490 to 680

transactions. This suggests a somewhat consistent high level of activity on these particular

dates. The dates also are not in chronological order, indicating there are no immediate visible

patterns or trends, like spikes on specific days or months. This could imply that high-transaction

Project 1: Fraud Detection 60 Duyen Tran

days are scattered throughout the year and may not be tied to common retail patterns like

holidays or weekends.

3) Cardnum

Description: Showed the frequency of transactions per card number. The distribution shows the

top 20 field values of the Card Number. The most common card number is 515142148452 with

a total of 1,192 transactions. The rest of the card numbers have a much lower frequency of use.

This suggests a variety of card numbers used less often, which might be expected in a large

dataset representing individual transactions by different cardholders. The diversity in card

number usage could validate the robustness of transaction data.

Project 1: Fraud Detection 61 Duyen Tran

4) Merchnum

Description: A merchant number identifying the merchant involved in the transaction

The distribution shows the top 20 field values of Merchant Number. The most common merchant

number is 930090121224 with a total of 9,419 transactions

Project 1: Fraud Detection 62 Duyen Tran

5) Merch zip

Description: The zip code of the merchant’s location. The distribution shows the top 15 field

values of the Merch zip. The most common value is 38118 with a total of 11,998 transactions

Project 1: Fraud Detection 63 Duyen Tran

6) Merch Description

Description: A textual description of the merchant. The distribution shows the top 15 field values

of Merchant Descriptions. The most common value is GSA-FSS-ADV with a total of 1,706

transactions, followed by 'SIGMA-ALDRICH' and 'STAPLES #941'.

There is a visible concentration of transactions among a few merchants, this might suggest

preferred vendors or could indicate areas where business is focused. The chart sheds light on

vendor relationships, which vendors are most commonly used for transactions, and might point to

contracts or purchasing agreements. It also appears that after the top few merchants, the frequency

of transactions per merchant decreases, which is typical of a long-tail distribution. This could

suggest a wide variety of less frequently used merchants.

7) Merch state

Description: The state in which the merchant is located. The distribution shows the top 15 field

values of Merchant States. Tennessee (TN) has the highest count of transactions with 12169

counts, followed by Virginia (VA) with 7,954 transactions, and California(CA) with 6,890

transactions

Project 1: Fraud Detection 64 Duyen Tran

A significant proportion of the transactions take place in the top states. This could indicate that

the business has a more substantial presence in the presence or customer base in these states.

However, there is a noticeable drop-off in transaction counts for other states. This could be due to

a variety of factors including population density, market penetration, or business focus.

8) Transtype

Description: The type of transaction, is represented as a single character. The pie chart shows the

distribution of transaction type. “P” has dominated the highest number of transactions with a total

of 97,497 transactions, followed by “A” and “D”. The disproportion frequency of transaction

types might warrant further analysis because “P” might be regular purchases whereas “Y” might

represent less common or special types of transaction.

Project 1: Fraud Detection 65 Duyen Tran

9) Amount

Description: The transaction amount in dollars.

The first histogram shows the distribution of the Amount field, displaying the data up to the 98th

percentile. The tallest bar at the far left suggests a high frequency of transactions with a very

small amount, likely indicating common low-value transactions typical in consumer behavior.

Project 1: Fraud Detection 66 Duyen Tran

10) Fraud

Description: A binary indicator (0 or 1) denotes whether the transaction was fraudulent or not.

The total count of Fraud = 0 is 95805, and the total count of Fraud = 1 is 2047.

Project 1: Fraud Detection 67 Duyen Tran

Appendix 2: Additional trials using LightGBM Forward

Project 1: Fraud Detection 68 Duyen Tran

Appendix 3: Additional trials using Catboost Forward

Project 1: Fraud Detection 69 Duyen Tran

References

[1], [2] ChatGPT, conversation with the author, May 10, 2024.

[3] Ansari, Y. (2023) Understanding logistic regression: A beginner’s guide, Medium.

Available at:

https://medium.com/@novus_afk/understanding-logistic-regression-a-beginners-guide-73f148866

910

[4] Tusyakdiah, H. (2020) Klasifikasi decision tree Dengan R, Medium.

Available at: https://halimatusyak.medium.com/klasifikasi-decision-tree-dengan-r-f12a0e48e060

[5] Fraud detection in python (2019) Trenton McKinney.

Available at: https://trenton3983.github.io/posts/fraud-detection-python/

[6] Mandot, P. (2018) What is LIGHTGBM, how to implement it? how to fine tune the

parameters?, Medium. Available at:

https://medium.com/@pushkarmandot/https-medium-com-pushkarmandot-what-is-lightgbm-how

-to-implement-it-how-to-fine-tune-the-parameters-60347819b7fc

[7] Yang, H. et al. (2023) CatBoost–Bayesian hybrid model adaptively coupled with modified

theoretical equations for estimating the undrained shear strength of Clay, MDPI. Available at:

https://www.mdpi.com/2076-3417/13/9/5418

[8] GeeksforGeeks (2023) Artificial Neural Networks and its applications, GeeksforGeeks.

Available at: https://www.geeksforgeeks.org/artificial-neural-networks-and-its-applications/

[9](PDF) a hybrid ensemble method for pulsar candidate classification. Available at:

https://www.researchgate.net/publication/335483097_A_hybrid_ensemble_method_for_pulsar_ca

ndidate_classification\.

Project 1: Fraud Detection 70 Duyen Tran

https://medium.com/@novus_afk/understanding-logistic-regression-a-beginners-guide-73f148866910
https://medium.com/@novus_afk/understanding-logistic-regression-a-beginners-guide-73f148866910
https://halimatusyak.medium.com/klasifikasi-decision-tree-dengan-r-f12a0e48e060
https://trenton3983.github.io/posts/fraud-detection-python/
https://medium.com/@pushkarmandot/https-medium-com-pushkarmandot-what-is-lightgbm-how-to-implement-it-how-to-fine-tune-the-parameters-60347819b7fc
https://medium.com/@pushkarmandot/https-medium-com-pushkarmandot-what-is-lightgbm-how-to-implement-it-how-to-fine-tune-the-parameters-60347819b7fc
https://www.mdpi.com/2076-3417/13/9/5418
https://www.geeksforgeeks.org/artificial-neural-networks-and-its-applications/
https://www.researchgate.net/publication/335483097_A_hybrid_ensemble_method_for_pulsar_candidate_classification%5C
https://www.researchgate.net/publication/335483097_A_hybrid_ensemble_method_for_pulsar_candidate_classification%5C

